本书共分为11章,内容包括:神经网络概述、感知器、线性神经网络、BP网络、径向基函数网络、反馈型神经网络、竞争型神经网络、神经网络控制系统、图形用户界面等。
本书是一本详细探索和展示脉冲耦合神经网络(PCNN)极佳图像处理能力的专著。PCNN及其相关模型均源自生物神经元启发模型研究,是图像纹理分析、边缘提取、区域分割等非常强大的处理工具。
《机器学习/计算机科学丛书》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。《机器学习/计算机科学丛书》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习/计算机科学丛书》可作为计算机专业本科生、研究生教材
该书系统地论述了人工神经网络的主要理论、设计基础及应用实例,旨在使读者了解神经网络的发展背景和研究对象,理解和熟悉它的基本原理和主要应用,掌握它有结构和设计应用方法,为深入研究和应用开发打下基础。为了便于读者理解,书中尽量避免烦琐的数学推导,加强了应用举例,并在内容的选择和编排上注意到读者初次接触新概念的易接受性和思维
本书是国家*立项建设的优秀网络课程“AI智能网络课程”的配套教材。全书共10章,主要内容:绪论、知识表示、搜索原理、推理技术、机器学习、规划系统、专家系统、自然语言理解、智能控制、人工智能程序设计。附录中给出了人工智能网络课程使用指南。本书可作为本科学校和高职高专学校计算机相关专业的“人工智能”课程教材或教学参考书,还
本书主要阐述人工智能问题求解方法的一般性原理和基本思想。主要内容有:一般的搜索问题包括盲目搜索和启发式搜索等;与或图搜索,包括AO算法和博亦树搜索等;谓词逻辑以及基于归结的定理证明方法;知识表示,包括产生式方法、语义网络、框架等;不确定性推理方法,包括贝叶斯方法、证据理论和确定性方法等;机器学习,包括实例学习、解释学习
《人工智能原理与方法》较全面地介绍了人工智能的基本理论、方法及其应用技术。全书共12章,可分为三大部分:第一部分包括第1章至第6章,论述了人工智能的三大技术,即知识表示、推理及搜索,重点讨论了不确定性的表示及处理技术;第二部分包括第7章至第10章,着重讨论了专家系统、机器学习、模式识别及智能决策支持系统等研究领域的有关