本书探索如何将机器学习应用于各种安全问题(如入侵检测、恶意软件分类和网络分析)。机器学习和安全专家克拉伦斯·奇奥与大卫·弗里曼为讨论这两个领域之间的联姻提供了框架,另外还包括一个机器学习算法工具箱,你可以将其应用于一系列安全问题。
粒子群优化算法是一种新的模仿鸟类群体行为的智能优化算法,是群体智能优化算法的一个重要分支,已成为国际上仿生智能计算领域里的研究热点和重点之一。本书共6章,分别论述了优化问题和仿生智能计算、模仿鸟群觅食行为的粒子群优化算法、形式多样的粒子群优化算法、无速度项的粒子群优化算法、分布估计粒子群优化算法和粒子群优化算法的应用等
本书结合两个重要和流行的研究领域:复杂网络和机器学习,不仅包括基础背景知识,还包含近期*新的研究进展。书中包括大量插图和例题帮助读者理解主要思想和实现细节。
本书首先简要介绍流行的TensorFlow库,并讲解如何用它训练不同的神经网络。你将深入了解神经网络的基础知识和它背后的数学原理,以及为什么我们会选择TensorFlow训练神经网络。然后,你将实现一个简单的前馈神经网络。接下来,你将使用TensorFlow掌握神经网络的优化技术和算法,以及一些更复杂的神经网络的实现。
本书主要介绍Caffe的技术原理和一些高级使用技巧,首先介绍深度学习的趋势和业内动态,然后介绍Caffe的基础知识。在理解了Caffe算法的基础上,介绍Caffe的技术原理和特点,包括数学知识和设计知识。*后介绍Caffe深度学习多任务网络。本书将实践和现有系统进行无缝对接,并详述了各种调参技巧。
深度学习,特别是深度卷积神经网络是人工智能的重要分支领域,卷积神经网络技术也被广泛应用于各种现实场景,在许多问题上都取得了超越人类智能的结果。本书作为该领域的入门书籍,在内容上涵盖深度卷积神经网络的基础知识和实践应用两大方面。全书共14章,分为三个部分:第一部分为绪论;第二部分(第1~4章)介绍卷积神经网络的基础知识、
《人工智能英语入门(词句篇)》围绕“机器人英语教学,活跃试验区改革,突出专业特色”的方针,以机器人领域中的百词百句为起点,选取了人工智能英语中常见的一百个词条,提供汉语释义和中英文对照的例句,学习者可以从语境、语用、语义和结构等多方面进行活学活用。
自人工智能问世以来,人们普遍持有人机对立的观点,且无时无刻不在害怕自己的工作会被人工智能取代。作者认为,是时候抛开这些无谓的担忧了,因为人类社会正走向一个与机器共融共生的时代。 未来的新型工作模式是什么?未来有哪些工作不会被人工智能取代?人工智能时代重要的生存技能是什么?本书围绕这三大核心问题做了透彻的分析。作者带
《深度学习基础教程》是真正适合深度学习初学者的入门书籍,全书没有任何复杂的数学推导。《深度学习基础教程》首先介绍了深度学习的优势和面临的挑战、深度学习采用深层架构的动机、学习深度学习需要的数学知识和硬件知识以及深度学习常用的软件框架。然后对多层感知机、卷积神经网络(CNN)、受限玻耳兹曼机(RBM)、循环神经网络(RN
本书深入介绍了人工智能六十余年发展里程中出现的重要历史事件、理论学说和所取得的激动人心的成果;也从科普的角度,尽可能以不依赖数学等专业知识的方式去介绍这些成果背后的理论与算法。读者可以通过本书对人工智能学科发展里程的解析体会到人工智能的创造者和推动者们所希望的智能理论和产品是如何工作的。无论是与人工智能产业相关的研发人