本书为全国教育科学“十一五”规划课题研究成果。 书中首先系统地讲述了有限元分析的基本理论,在此基础之上详细地介绍了通用有限元分析软件-ANSYS的具体应用。全书分为上下二篇,上篇讲述有限元法的基本原理,包括有限元法的基本思想、特点及其应用领域,弹性力学基本理论,弹性力学有限元法,有限元分析中的若干问题等。下篇以ANSY
本书是作者十多年计算方法研究应用和教学经验的结晶。全书共分9章,主要内容包括算法与误差、非线性方程求根、线性方程组的直接求解和迭代求解、代数插值、数值积分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。本书的特色和优势是:注重算法与程序实现,强调理论知识与程序设计的紧密结合,既有理论性,也有实用性,对每个
本书对东南大学近5年来工科硕士研究生、工程硕士研究生学位课程《数值分析》试题以及工科博士研究生入学考试《数值分析》试题作了详细的解答。
本书分为传统边界元法的基本内容和近年发展的快速多极边界元法等新进展两大部分。前七章包含了传统边界元法的基本内容,第八、第九章介绍快速多极边界元法和大规模快速多极边界元并行算法,第十二章介绍与边界积分方程相关的边界型无网格法。另外在第十、第十一两章简要介绍国际上边界元法比较成功的应用,包括在机械、结构工程中的应用,和声场
TheuseofthepreconditionedconjugategradientmethodwithcirculantpreconditionerstosolveToeplitzsystemswasproposedin1986.Inthisshortbook,theauthormainlystudiessom
《数值计算方法》介绍数值计算方法的研究对象、内容和特点,主要内容为误差理论、方程求根、线性方程组的数值方法、矩阵的特征值与特征向量问题、代数插值、数据拟合与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程的数值解法和数值试验.每章都配有一定量的习题,书末附有答案。
《数值最优化算法与理论(第2版)》较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共轭梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法
《普通高等学校信息与计算科学专业系列丛书,普通高等教育十一五国家级规划教材·数值计算引论(第2版)》讨论了基本的数值计算方法,突出科学计算的基本概念和训练,强调数学软件在科学计算中的作用。主要内容包括MATLAB软件介绍、线性方程组的数值方法、函数的数值逼近、数值积分、微分方程问题的数值计算、非线性方程、矩阵特征值问题
本书共分九章,内容包括误差知识,方程的近似解法,线性代数方程组的解法,矩阵的特征值与特征向量的计算方法,插值法与曲线拟合,数值积分与数值微分,常微分方程初值问题的数值解法,偏微分方程的差分解法。每章末配有适量习题,书末附有习题答案。本书可作为高等工科院校教材,也可供有关方面工程技术人员参考。
《数值计算方法》旨在介绍科学与工程计算中一些基本数学问题的实用计算方法,主要内容包括:线性代数方程组的直接解法和迭代法,矩阵特征值与特征向量的计算,非线性方程组和最优化问题的计算方法,函数插值与曲线拟合方法,数值积分,离散傅里叶变换快速算法,常微分方程初值问题的数值积分法,解偏微分方程的差分法和有限元法。《数值计算方法