《数值分析(上册)》是为高等学校信息与计算科学本科教学而编写的,强调数值计算的理论分析,适用于较多学时的“数值分析”课程教学。全书共分上、下两册,《数值分析(上册)》为上册,主要介绍有关数值代数的内容、科学与工程计算中所出现的线性代数问题数值求解的算法设计原理、误差分析与收敛性估计等。
本书作为一本非数学专业的本科生、硕士研究生和工程硕士研究生的数值计算方法课程的教材或教学参考书,比较系统地介绍了科学和工程计算中常用的数值分析的理论和方法,内容包括误差分析、非线性方程的求根、解线性方程组的直接法、解线性方程组和非线性方程组的迭代法、矩阵的特征值和特征向量的求法、插值、最小二乘逼近、数值微分和数值积分、
本书介绍了科学计算中常用的计算方法,其内容包括误差的概念,插值方法,线性代数方程组的解法,非线性方程的求根,数值积分与数值微分,最小二乘法,特征值的计算,常微分方程初值问题的数值解法等。该书重点突出,深入浅出,便于教学。每种算法都附有C语言和Matlab语言程序(放入附在本书封底的光盘里),便于读者上机实习,也便于实际
本书主要介绍Matlab数学软件的主要命令和应用内容,另外本书还加入了与高等数学、线性代数、计算方法课程有关的数学实验内容,使Matlab能很方便地融入到高等数学、线性代数或计算方法课程的教学中。
本书是数值分析的学习指导,包括误差理论、非线性方程和方程组求解等,对数值分析的基本理论进行了系统的归纳,对各类典型的问题作了详细分析。
本书介绍了数值分析的理论及实用知识,通过大量的例题详细地讲述了如何利用MATLAB软件实现各种数值算法,并将数值解与对应的符号解在同一图形窗口中实现可视化显示。
《普通高等教育“十一五”国家级规划教材:数值分析》系统阐述了数值分析的基本概念和理论,内容包括:数值计算的误差,解线性方程组的直接法和迭代法,线性方程组的小二乘解,矩阵特征值问题,插值法,函数逼近。曲线拟合,数值积分,解非线性方程和方程组的数值方法,《普通高等教育“十一五”国家级规划教材:数值分析》适合高等院校信息与计
《北京大学数学教学系列丛书:数值分析》是高等院校计算数学专业本科生学习数值分析课程的教材。全书内容除包括传统数值分析课程讲授的误差分析、多项式插值、数值微分与积分、非线性方程的数值解法、常微分方程初值问题的数值解法等以外,还加入了快速Fourier变换和MonteCarlo方法。此外,在传统的内容中也加入了新的元素,例
本书通过ABAQUS有限元实例的详细剖析,介绍了ABAQUS在线性静力分析、接触分析、弹塑性分析、热应力分析、多体分析、频率提取分析、瞬时模态动态分析、显式动态分析等领域的分析方法,以及复杂实体建模、分析计算和后处理的技巧。 本书内容从实际应用出发,侧重于ABAQUS的实际操作和工程问题的解决,教会读者如何根据问题的
《科学计算中的偏微分方程有限差分法》全书共分八章,一章是预备知识,介绍一些重要基本概念和重要定理;第二章介绍差分近似导数的各种方法,及差分格式的Fourier误差分析;第三章介绍差分格式的收敛性、相容性和稳定性的分析,重点介绍稳定性分析的Fourier级数法和矩阵分析法;第四章介绍椭圆型方程的差分方法,包括基于变分原理